The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 01, 2000
Filed:
Oct. 26, 1998
Brian Keith Allston, Rochester, NY (US);
Albert Martin Knebel, Holcomb, NY (US);
Michael Raymond Salemi, Rochester, NY (US);
General Motors Corporation, Detroit, MI (US);
Abstract
An improved method and apparatus for opening and closing a high performance shape memory alloy (SMA) fuel injector that minimizes performance variations due to changes in ambient temperature. When opening the injector to commence fuel injection, a relatively high voltage is applied to an SMA element of the injector to quickly heat the element to its high temperature state, quickly opening the valve. The current level is monitored as a measure of the element resistivity, and when the determined resistivity indicates that the high temperature state transition is complete, the voltage is reduced to a hold value, sufficient to continue resistivity measurement. When the determined resistivity indicates that the element is beginning to transition back to the ambient temperature state, the high voltage is re-applied to begin a new control cycle. To close the injector, the electric heating is discontinued, and fuel circulating through the injector cools the element to its ambient temperature state. The variability in opening response is reduced because the high voltage is significantly higher than a voltage that would thermally damage the SMA element if sustained, and the resistivity feedback during application of the high voltage is used to control the timing of the current reduction. The variability in closing response is reduced by the repeated switching between high and low voltage control, which controls the temperature of the element, and thereby maintains the element in a state of readiness to return to the ambient temperature state. Additionally, the repeated switching between high and low voltage control limits the peak temperature of the SMA element, and prevents damage to the element if the circulating fuel fails to adequately cool the element. Finally, the use of current measurement in the control circuit permits reliable determination of the resistivity of the SMA element without requiring external thermal sensors.