The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 18, 2000
Filed:
Sep. 02, 1997
Stephen R McAdams, San Ramon, CA (US);
Bradley L Edgar, Berkeley, CA (US);
Richard J Martin, San Jose, CA (US);
Marvin M Kilgo, Pasadena, CA (US);
Christopher B Baer, Knoxville, TN (US);
John D Stilger, San Jose, CA (US);
Thermatrix, Inc., San Jose, CA (US);
Abstract
An improved method and apparatus is provided for thermally reacting chemicals in a matrix bed of porous inert media. The reaction is conducted in an apparatus that is capable of establishing and maintaining a non-planar reaction wave within the matrix bed. The positioning of the non-planar reaction wave permits the interior surfaces of the vessel to be maintained at a temperature at least above 175.degree. F. The apparatus includes a vessel that contains the matrix bed; one or more feed tubes that extend into the matrix bed, where preferably an exterior portion of each of the feed tubes that passes through the vessel is insulated; an exhaust outlet; and a means for heating the matrix bed. The non-planar reaction wave is established by heating at least a portion of the matrix bed to at least the reaction temperature of the chemicals and feeding a process stream containing the chemicals to be reacted into the feed tubes. Upon exiting the feed tubes, the process stream is reacted in a non-planar reaction wave to produce heat and the reacted process stream. The heat from the non-planar reaction wave maintains the interior surfaces of the vessel at a temperature of at least 175.degree. F. during operation of the vessel. The reacted process stream is then directed to the exhaust outlet of the vessel.