The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 18, 2000
Filed:
Oct. 17, 1996
Jorma Kivilahti, FIN-02170 Espoo, FI;
Other;
Abstract
The invention relates to a method for joining coated metallic conductors and the application of the method to production of very high density microjoints as well as to the fabrication of macrojoints. It is characteristic for the invention that the surfaces to be connected are coated with solder metal or solder alloy layers, one on the top of the other. The mating contact areas are heated for a short period of time over the temperature where the base coatings and the top coatings fuse transiently. It is essential that the base coating and the top coating cannot produce intermetallic compounds with each other and that the contact interface between them is as metallic as possible. This kind of contact can be obtained for example by chemical or electrochemical deposition. Moreover, when the topcoat is capable of protecting the base coating, for example bismuth, the joining can be performed under normal atmosphere and without any flux. The method can be applied equally well either to the manufacturing of high density microjoints or to the joining of relatively large contact areas, which reduces the number of process steps in electronics assembly. A thin polymer film can be placed between the contact pads of components and substrate metallizations containing solder particles which are compatible with the base coatings of the contact areas. When the contact area is heated under external pressure, local microjoints are formed due to the fact that the solder particles and the base coating fuse transiently. Polymer film enhances the formation of the local microjoints, protects the solder joints from external oxygen and moisture. The joining method of the present invention is easy to use. It does not imply the application of flux, and thus the joints need no cleaning. Furthermore, since the method is lead-free, it is environmental-friendly also from that point of view.