The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 09, 1999
Filed:
Oct. 23, 1997
Young-woo Seo, Kyungki-do, KR;
Young-pil Kim, Kyungki-do, KR;
Myeon-koo Kang, Seoul, KR;
Won-shik Lee, Seoul, KR;
Abstract
Methods of forming integrated circuits having memory cell arrays therein and peripheral circuits therein include the steps of selectively forming more lightly doped source and drain regions for transistors in the memory cell arrays. These more lightly doped source and drain regions are designed to have fewer crystalline defects therein caused by ion implantation, so that storage capacitors coupled thereto have improved refresh characteristics. Preferred methods include the steps of forming a first well region of first conductivity type (e.g., P-type) in a memory cell portion of a semiconductor substrate and a second well region of first conductivity type in a peripheral circuit portion of the semiconductor substrate extending adjacent the memory cell portion. First and second insulated gate electrodes are then formed on the first and second well regions, respectively, using conventional techniques. First dopants of second conductivity type are then implanted at a first dose level into the first and second well regions, using the first and second insulated gate electrodes as an implant mask. These dopants are then diffused to form lightly doped source and drain regions adjacent the first and second insulated gate electrodes. Second dopants of second conductivity type are then selectively implanted at a second dose level, greater than the first dose level, into the second well region using self-alignment techniques. However, these dopants are preferably not implanted into the first well region. These second dopants are then diffused into the second source/drain regions.