The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 19, 1999
Filed:
Oct. 15, 1998
Michael E Farmer, West Bloomfield, MI (US);
Craig S Jacobs, Farmington Hills, MI (US);
Automotive Systems Laboratory, Inc., Farmington Hills, MI (US);
Abstract
A leakage calibration and removal system and method estimates the complex in-phase and quadrature phase (I/Q) components of a leakage signal for each beam location in the sampled down-converted radar signal in a radar system (10). In a digital embodiment, the stored leakage calibration signal (264) is subtracted (206) from the sampled radar signal, and the resultant signal is processed (208, 210, 212) to detect targets. A leakage calibration process (250) is activated if a leakage signal test (214) indicates a problem for a sufficient number of consecutive scans (216), wherein for each beam location, M consecutive I/Q waveforms are averaged (252), known targets are removed (254, 256, 258), and the resulting signal is scaled (262) and stored (264) as a new leakage calibration signal if the variance is within acceptable limits (262). In a hybrid embodiment, the stored leakage signal (364) is converted to analog form (366), subtracted (301) from the analog down-converted radar signal (300), and scaled by a variable gain (303) before the complex I/Q components are sampled therefrom (302, 304). A leakage calibration process (350) is activated every Nth scan (316), wherein for each beam location, M chirp waveforms are averaged (352) and checked for variance (354). If the variance is within acceptable limits, the leakage signal is updated by a Kalman Filter (356), stored as the new leakage calibration signal (364), and the Kalman gain matrices are updated (358).