The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 28, 1999

Filed:

Nov. 03, 1997
Applicant:
Inventors:

Mark W Kroll, Minnetonka, MN (US);

Theodore P Adams, Edina, MN (US);

Kenneth M Anderson, Bloomington, MN (US);

Charles U Smith, Minnetonka, MN (US);

Assignee:

Angeion Corp, Minneapolis, MN (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
A61N / ;
U.S. Cl.
CPC ...
607-5 ;
Abstract

A capacitor-discharge implantable cardioverter defibrillator (ICD) has a relatively smaller mass of less than about 120 grams. The smaller mass of the ICD is achieved by selecting and arranging the internal components of the ICD to deliver a maximum defibrillation countershock optimized in terms of a minimum physiologically effective current (I.sub.pe), rather than a minimum defibrillation threshold energy (DFT). As a result of the optimization in terms of a minimum effective current I.sub.pe, there is a significant decrease in the maximum electrical charge energy (E.sub.c) that must be stored by the capacitor of the ICD to less than about 30 Joules, even though a higher safety margin is provided for by the device. Due to this decrease in the maximum E.sub.c, as well as corollary decreases in the effective capacitance value required for the capacitor and the net energy storage required of the battery, the overall displacement volume of the ICD is reduced to the point where subcutaneous implantation of the device in the pectoral region of human patients is practical. The size of the capacitor is reduced because the effective capacitance required can be less than about 125 .mu.F. By optimizing both the charging time and the countershock duration for the smaller maximum E.sub.c, the size of the battery is reduced because the total energy storage capacity can be less than about 1.0 Amp-hours. In the preferred embodiment, the charging time for each defibrillation countershock is reduced to less than about 10 seconds and the pulse duration of the countershock is reduced to less than about 6 milliseconds.

Published as:

Find Patent Forward Citations

Loading…