The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 22, 1999

Filed:

Dec. 12, 1997
Applicant:
Inventors:

Louis Supino, Boulder, CO (US);

Jim Graba, Longmont, CO (US);

Shuangxia Zhu, Austin, TX (US);

Paul M Romano, Boulder, CO (US);

Assignee:

Cirrus Logic, Inc., Fremont, CA (US);

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
G11B / ;
U.S. Cl.
CPC ...
369 4428 ; 369 4434 ;
Abstract

In an optical disk storage device wherein user data is demodulated from a light beam reflecting off data pits in tracks of an optical disk storage medium, a quadrature seek signal is generated indicative of the light beam crossing tracks of the optical disk during a seek operation. The quadrature seek signal is generated from a discrete-time tracking error signal (TES) and a discrete-time RF baseband signal. The discrete-time TES is generated according to the mode of operation, compact disk (CD) or digital video disk (DVD). In CD mode the TES is generated as the difference between E and F tracking photodiodes, and in DVD mode the TES is generated using a discrete-time differential phase detector (DPD). To generate the discrete-time RF baseband signal, the RF data signal (generated as the sum A+B+C+D of a four quadrant photodiode) is sampled at the channel rate and the RF data samples passed through a discrete-time envelope detector. The envelope detector extracts a discrete-time RF baseband signal which represents the light beam's location with respect to a track centerline. The discrete-time TES and baseband signals are synchronized and converted into binary square waves which form a quadrature seek signal (four transitions per track) for counting track crossings and for determining the radial seek direction.


Find Patent Forward Citations

Loading…