The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 08, 1999

Filed:

Jul. 09, 1997
Applicant:
Inventors:

Carlos Dangelo, Los Gatos, CA (US);

Vijay Nagasamy, Union City, CA (US);

Assignee:

LSI Logic Corporation, Milpitas, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G06F / ;
U.S. Cl.
CPC ...
364488 ; 364489 ; 364578 ;
Abstract

A methodology for generating structural descriptions of complex digital devices from high-level descriptions and specifications is disclosed. The methodology uses a systematic technique to map and enforce consistency of the semantics imbedded in the intent of the original, high-level descriptions. The design activity is essentially a series of transformations operating upon various levels of design representations. At each level the intended meaning (semantics) and formal software manipulations are captured to derive a more detailed level describing hardware meeting the design goals. Important features of the methodology are: capturing the users concepts, intent, specification, descriptions, constraints and trade-offs; architectural partitioning; what-if analysis at a-high level; sizing estimation; timing estimation; architectural trade-off; conceptual design with implementation estimation; and timing closure. The methodology includes using estimators, based on data gathered over a number of realized designs, for partitioning and evaluating a design prior to logic synthesis. From the structural description, a physical implementation of the device is readily realized. The methodology further includes an automated interactive, iterative technique for creating a system-level specification in a directly-executable formal specification language. This technique makes use of formal verification and feasibility analysis techniques to iteratively refine the specification prior to implementation. This iterative refinement eliminates many ambiguities and inconsistencies from the specification, and ensures that there is at least one realizable implementation of the specification. The formal verification techniques are further employed to ensure that as the design progresses, compliance with the specification is maintained, and that any specification change is reflected and accounted for, both system-wide and implementation-wide.


Find Patent Forward Citations

Loading…