The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 30, 1999

Filed:

Jun. 17, 1996
Applicant:
Inventor:

George L Matthaei, Santa Barbara, CA (US);

Assignee:

Superconductor Technologies, Inc., Santa Barbara, CA (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01P / ;
U.S. Cl.
CPC ...
505210 ; 505700 ; 505701 ; 505866 ; 333204 ; 333205 ; 333219 ;
Abstract

Microwave hairpin-comb filters utilize a plurality of hairpin (i.e., folded) half-wavelength microstrip or stripline resonators arranged side-by-side and all with the same orientation. The coupling regions between resonators extend parallel to the sides of the resonators for substantially 1/8 to 1/4 wavelength at the frequency of resonance of the resonators. This length of coupling region between resonators, along with all resonators being oriented in the same direction, result in resonance effects in the coupling regions between the resonators. These effects greatly reduce the couplings between the resonators so that the resonators can be very closely spaced so as to produce a compact filter structure yet still have a narrow passband. For example, a compact narrow band filter structure is possible using high-Q nominally half wavelength hairpin resonators. The structure can also be made to produce poles of attenuation adjacent to the passband in order to enhance the filter cutoff characteristic. The filter structure can be conveniently tuned using asymmetric dielectric pieces which rotate above an interdigital conductor or other two conductors pattern placed between the open ends of each resonator, the axis of rotation being normal to the substrate. This manner of tuning is particularly attractive for narrow-band, very low loss, high temperature superconductor (HTS) filters since these tuners can be made to give smooth tuning with no normal metal parts in the circuit and with no ground connections required. Such normal metal parts or ground connections would introduce considerable loss and degrade the HTS filter performance.


Find Patent Forward Citations

Loading…