The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 16, 1999

Filed:

Dec. 17, 1996
Applicant:
Inventor:

Lanny Starkes Smoot, Morris Township, NJ (US);

Assignee:

Bell Communications Research, Inc., Morristown, NJ (US);

Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G09G / ;
U.S. Cl.
CPC ...
345-7 ; 345-8 ; 348115 ; 348751 ; 348756 ; 359630 ;
Abstract

Disclosed is a virtual display (300) which provides a wide field-of-view that is lightweight and may be as thin as ordinary eyeglasses. One version of the invention includes a display (302), such as an LCD, a microlens array (304), and an aperture array (306) disposed between the LCD and the microlens array. The virtual display provides a pin-point of light for each pixel (306) of a display (302). Each pin-point of light in collaboration with an associated microlens (308) generates a directed ray of light. The ensemble of these rays forms a coherent image on a viewer's retina. Using high 'f' number microlenses permits a very short focal length between the pin-points and the microlenses and thus provides a very thin virtual display. The aperture array may be provided by a plate disposed between the display and the lens, or it may be apertures configured on the back side (away from the viewer) of the microlenses or on the front (towards the viewer) of the display. Each aperture in the array receives light from one pixel and directs a pin-point of that light to a microlens in the microlens array. Each microlens receives a single pin-point and directs the resulting ray so that a coherent image is formed on the viewer's retina.


Find Patent Forward Citations

Loading…