The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 16, 1999
Filed:
Aug. 18, 1995
Stephen P Goff, Tenafly, NJ (US);
Ganjam V Kalpana, Yonkers, NY (US);
The Trustees of Columbia University in the City of New York, New York, NY (US);
Abstract
Upon entry into a host cell, retroviruses direct the reverse transcription of the viral RNA genome and the establishment of an integrated proviral DNA. The retroviral integrase protein (IN) is responsible for the insertion of the viral DNA into host chromosomal targets. The IN catalyzes two specific biochemical reactions: (i) cleavage of the 3'termini of the viral DNA to produce 3'-OH ends, and (ii) joining of the two newly generated 3'-termini to the 5'-phosphates on each strand of the target sequence in a concerted strand-transfer reaction. The yeast two-hybrid system was used to identify a novel human gene product, herein designated integrase interactor 1 or INI-1, that binds tightly to the human immunodeficiency virus type 1 (HIV-1) integrase in vitro. Approximately 10.sup.6 complementary DNAs (cDNAs) of the HL60 macrophage-monocytic cell line were expressed as GAL4AC (activation domain) fusions and tested for coactivation of a reporter gene together with a GAL4DB (DNA binding) IN fusion. Overlapping cDNA clones were identified and their nucleotide sequences ascertained. Nucleotide sequence analysis revealed that INI-1 displays limited amino acid homology to the yeast SNF5 protein, a transcriptional activator required for high-level expression of many disparate cellular genes. The INI-1 gene product will prove useful for the generation of biochemical reagents and the development novel HIV-1 antiviral agents.