The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 09, 1999
Filed:
Jul. 16, 1997
Shinji Kanda, Kawasaki, JP;
Jun Wakitani, Kawasaki, JP;
Tsugito Maruyama, Kawasaki, JP;
Toshihiko Morita, Kawasaki, JP;
Fujitsu Limited, Kawasaki, JP;
Abstract
A method for determining an orientation of a line segment in a contour in a local area of a binary contour image. The number of pixels having a predetermined value and located in each orientation in the local area, is obtained, and it is determined that a line segment exists in an orientation in which the number of pixels is large. Further, when it is determined that the number of pixels located in each of a plurality of orientations and having a predetermined value, is greater than a sum of the numbers of pixels in orientations adjacent to said each orientation on both sides thereof, it is determined that a line segment exists in said each orientation. Two orientations in which large numbers of pixels are located are detected, and it is determined whether the point is a constituent of a line segment, a line segment of the sub-straight-line form, or a near-corner point, depending on angles made by the two orientations is equal to 180.degree., or a difference of the angles made by the two orientations from 180.degree.. Contiguously arrayed pixels in the same orientation are detected as a line segment. A position and an orientation are obtained from points near a corner, and representative values of the positions and orientations of contiguously arrayed near-corner points are determined. (FIG. 3)