The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 02, 1999
Filed:
Feb. 09, 1998
William K Zuravleff, Mountainview, CA (US);
Mark Semmelmeyer, Sunnyvale, CA (US);
Timothy Robinson, Boulder Creek, CA (US);
Scott Furman, Union City, CA (US);
Microunity Systems Engineering, Inc., Sunnyvale, CA (US);
Abstract
A non-blocking load buffer is provided for use in a high-speed microprocessor and memory system. The non-blocking load buffer interfaces a high-speed processor/cache bus, which connects a processor and a cache to the non-blocking load buffer, with a lower speed peripheral bus, which connects to peripheral devices. The non-blocking load buffer allows data to be retrieved from relatively low bandwidth peripheral devices directly from programmed I/O of the processor at the maximum rate of the peripherals so that the data may be processed and stored without unnecessarily idling the processor. I/O requests from several processors within a multiprocessor may simultaneously be buffered so that a plurality of non-blocking loads may be processed during the latency period of the device. As a result, a continuous maximum throughput from multiple I/O devices by the programmed I/O of the processor is achieved and the time required for completing tasks and processing data may be reduced. Also, a multiple priority non-blocking load buffer is provided for serving a multiprocessor running real-time processes of varying deadlines by prioritization-based scheduling of memory and peripheral accesses.