The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 02, 1999

Filed:

Aug. 23, 1996
Applicant:
Inventors:

Lucian G Ferguson, Seattle, WA (US);

Lewis M Fraas, Issaquah, WA (US);

Assignee:

JX Crystals Inc., Issaquah, WA (US);

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
136253 ;
Abstract

A thermophotovoltaic generator includes an infrared cobalt oxide doped refractory ceramic emitter having a broad power band region which is matched with the energy conversion band of a low bandgap thermophotovoltaic cell receiver. The generator is provided with a heat source or is constructed for mounting on a heat source or for holding a heat source, such as a radioisotope. The generator is compatible with any heat source, including, but not limited to, a hydrocarbon flame, nuclear reactors, and radioisotopes. The emitter is made of a refractory ceramic material such as cobalt oxide doped alumina or magnesia. The refractory compound of the emitter is preferably doped with a small number of substitutional ions to create a material for emitting near blackbody radiation in a wide wavelength band above a threshold energy level and a minimal amount of radiation at wavelengths longer than the threshold level. In preferred embodiments of the present invention, the cobalt oxide doped emitter strongly emits infrared radiation in a wavelength interval between about 1 and 2.1 microns. The photovoltaic cells of the receiver are preferably of Ge cells, GaSb cells, In(1-z)Ga(z)As cells and Ga(1-x)In(x)Sb(1-y)As(y), where x and y range between 0 and 0.2 and z ranges between 0.3 and 0.7. A silica heat shield may be positioned between the emitter and the receiver when combustion heat sources are used for confining the combustion byproduct gases.


Find Patent Forward Citations

Loading…