The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 02, 1999
Filed:
Nov. 25, 1996
Scott Bair, Atlanta, GA (US);
SurgiJet, Inc., Irvine, CA (US);
Abstract
A method and instrument for thermal phacoemulsification includes, in one aspect, a process for introducing high temperature water into the lens capsule of the eye for emulsification purposes. The invention provides a mechanism for heating water to the desired temperature at the point of delivery, whereby the cannula that enters the eye is maintained at a temperature sufficiently low to avoid thermal damage to surrounding eye tissue. The invention provides an isenthalpic device for delivering heated water to the lens capsule for phacoemulsification. The device includes a intraocular cannula for delivering high pressure water, and a throttling mechanism at the point of delivery for converting the energy in the water stream from pressure to heat. The throttling mechanism may comprise a capillary passage, or a porous plug, or a micro-orifice which directs the fluid stream to strike a target in the cannula bore, after which the fluid is discharged from the cannula. In a further aspect, the invention comprises a fluid pressure intensifier generating high pressure fluid pulses that are delivered through the cannula to the throttling mechanism. The use of a fluid pressure intensifier minimizes the length of tubing that must carry high pressure fluid, and the use of a throttling mechanism to heat the fluid stream assures that the tubular cannula remains within a tolerable temperature range. Moreover, the risk of a catastrophic malfunction is held to an absolute minimum.