The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 26, 1999
Filed:
Sep. 16, 1996
Jean-Michel Masson, Toulouse, FR;
Florence Boe, Toulouse, FR;
Abstract
This procedure comprises the following steps: (1) cleavage of a circular cloning vector comprising two restriction sites a and b giving cohesive ends which are compatible with one another, and two restriction sites c and d which are close to the restriction sites a and b, by restriction enzyme(s), (2) introduction by ligation of the nucleic acid sequence to be polymerized into the linearized vector obtained in (1), between the two restriction sites a and b (1x vector), (3) cleavage of the recircularized vector obtained in (2), by restriction enzyme(s), (4) introduction by ligation of a gene coding for a suppressor tRNA into the linearized vector obtained in (3), between the two restriction sites c and d (1x+s vector), (5) cleavage of the vector obtained in (4) by restriction enzyme(s), (6) introduction by ligation of the fragment a-d obtained in (5) (1x+s fragment) between the sites b and d of a 1x vector as obtained in (2), after cleavage of this 1x vector at the said sites b and d, (7) introduction by ligation of the fragment obtained in (6) (2x+s fragment) between the sites b and d of a 1x vector as obtained in (2), after cleavage of this 1x vector, the cleavage being as defined in (6), (8) repetition of step (7), by insertion of the nx+s fragment into a 1x vector, until a sequence containing n+1 fragments is obtained, (9) transformation of a bacterial strain with the vector obtained in (8), and selection of mut+ strains, and (10) extraction of the (n+1)x polymer from the said selected strains.