The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 19, 1999
Filed:
Aug. 20, 1997
Salim N Jabr, Mountain View, CA (US);
Ditech Corporation, Sunnyvale, CA (US);
Abstract
A system and method are disclosed for adjusting the gain profile of an optical amplifier including a pump laser and an active gain element by selectively controlling the electron populations of at least one Stark sublevel of the electronic energy levels of the optical amplifier's active gain element. By dynamically controlling the electron populations of selected Stark sublevels the gain profile of the active gain element can be flattened. In a first method for controlling electron populations two-photon transitions are initiated between a pair of Stark sublevels of the same energy manifold of the active gain element. Two-photon transitions are stimulated by two additional pump lasers operating at wavelengths whose difference approximates the energy difference in the pair of Stark sublevels between which electrons are to be moved. In a second method for controlling electron populations single-photon transitions are initiated between a pair of Stark sublevels of different energy manifolds of the active gain element. Single-photon transitions are stimulated by an additional pump laser operating at a frequency difference that approximates the difference in the pair of energy levels. Alternatively, single photon transitions are stimulated by operating the amplifier's pump laser at a wavelength selected so as to simultaneously cause electron transitions from the ground level of the active gain element to one of the higher energy levels and electron transitions from a selected Stark sublevel of the upper laser level to a yet higher energy level.