The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 27, 1998
Filed:
Jul. 03, 1996
Mark S Isfeld, San Jose, CA (US);
Tracy D Mallory, Palo Alto, CA (US);
Bruce W Mitchell, San Jose, CA (US);
Michael J Seaman, Mountain View, CA (US);
Nagaraj Arunkumar, San Jose, CA (US);
Pyda Srisuresh, Milpitas, CA (US);
3Com Corporation, Santa Clara, CA (US);
Abstract
A communication technique for high volume connectionless-protocol, backbone communication links in distributed processing systems provides for control of latency and reliability of messages transmitted. The system provides for transmit list and receive list processes in the processors on the link. On the transmit side, a high priority command list and a normal priority command list are provided. In the message passing process, the command transmit function transmits commands across the backplane according to a queue priority rule that allows for control of transmit latency. Messages that require low latency are written into the high priority transmit list, while a majority of messages are written into the high throughput or normal priority transmit list. A receive filtering process in the receiving processor includes dispatch logic which dispatches messages either to a high priority receive list or a normal priority receive list. The filtering function also acts to drop messages received according to the amount of available buffer space in the receiving processor, as measured against watermarks based on reliability tags in message headers. The messages received are routed to either the high priority receive list or a normal priority receive list based on another control bit in the message headers. The receiving processor processes the messages in the receive queues according to a priority rule that allows for control of the latency between receipt of a message, and actual processing of the message by the receiving processor.