The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 20, 1998
Filed:
Apr. 26, 1996
Rao P Gullapalli, Richmond Heights, OH (US);
Mark J Loncar, Richmond Heights, OH (US);
Picker International, Inc., Highland Heights, OH (US);
Abstract
A plurality of radio frequency excitation pulses or shots (52) are applied, ten in the embodiment illustrated in FIGS. 4 and 5. Following each shot, sets of data lines are collected. In the first set, an early gradient echo (EGE1), a spin echo (SE1), and a late gradient echo (LGE1), are induced to form three corresponding data lines. Magnetization is inverted (56) and a second set of data lines are generated. In the illustrated embodiment, nine sets of data lines are generated in each repetition. Phase-encoding gradient pulses (86, 88) are applied to cause the early gradient echo, the spin echo, and the late gradient echo data lines of each set to fall offset by a third of k-space. Phase-encoding pulses (74) are applied before each set and stepped such that in half of the repetitions, the phase-encoding increases with each subsequent set. In the other half of the repetitions, the phase-encoding decreases for each subsequent set. In this manner, the first and last data line in each segment of k-space are from the same echo position with the repetition. By selecting the intermediate phase-encoding step with which to start the first set, the phase-encoding at the center of k-space is selectively adjustable such that the pseudo echo time is selectively adjustable.