The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 22, 1998
Filed:
Jul. 14, 1997
John C Platt, Mountain View, CA (US);
Steven Nowlan, San Jose, CA (US);
Joseph Decker, San Jose, CA (US);
Nada Matic, San Jose, CA (US);
Synaptics, Inc., San Jose, CA (US);
Abstract
A system for recognizing handwritten characters, including pre-processing apparatus for generating a set of features for each handwritten character, a neural network disposed for operating on sparse data structures of those features and generating a set of confidence values for each possible character symbol which might correspond to the handwritten character, and post-processing apparatus for adjusting those confidence values and for selecting a character symbol consistent with external knowledge about handwritten characters and the language they are written in. The pre-processing apparatus scales and re-parameterizes the handwritten strokes, encodes the scaled and re-parameterizd strokes into fuzzy membership vectors and binary pointwise data, and combines the vectors and data into a sparse data structure of features. The (nonconvolutional) neural network performs a matrix-vector multiply on the sparse data structure, using only the data for nonzero features collected in that structure, and, for a first layer of that neural network, using only successive chunks of the neural weights. The post-processing apparatus adjusts the confidence values for character symbols using a set of expert rules embodying common-sense knowledge, from which it generates a set of character probabilities for each character position; these character probabilities are combined with a Markov model of character sequence transitions and a dictionary of known words, to produce a final work output for a sequence of handwritten characters.