The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 15, 1998
Filed:
Dec. 20, 1996
Peter F Barbella, Littleton, MA (US);
Malcolm F Crawford, Lexington, MA (US);
William M Kaupinis, Methuen, MA (US);
Jeffrey E Carmella, Acton, MA (US);
Michael A Davis, Hudson, NH (US);
Other;
Abstract
A method for calibrating the radar system includes the steps of: replacing stored statistically generated 'average' error correction coefficients with error correction coefficients personal to a missile under test. More particularly, stored in the missile's memory are: (a) first personalized error correction coefficients generated in response to test signals produced internal to the missile and injected into a monopulse arithmetic unit for the missile's receiver/processor; and (b) a second set of personalized error coefficients generated in response to test signals external to the missile and injected through the missile's antenna to the receiver/processor. The missile includes a radio frequency (R.F.) energy test signal generator for performing a test during the missile's flight to determine 'in-flight' personalized error correction coefficients. The test is performed in-flight by injecting the R.F. energy test signal generated internal to the missile during the missile's flight into the monopulse arithmetic unit for the receiver/processor. The receiver/processor: (a) compares the first set of error correction coefficients with the 'in-flight' error coefficients and adjusts the second set of error correction coefficients in accordance with such comparison; and, (b) if R.F. energy external to the missile is less than a predetermined threshold level, uses the adjusted second set of coefficients during the missile's flight to produce boresight error signals; otherwise, the receiver/processor uses unadjusted first set of error correction coefficients.