The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Sep. 08, 1998

Filed:

Apr. 30, 1997
Applicant:
Inventors:

Badih El-Kareh, Austin, TX (US);

Richard Leo Kleinhenz, Wappingers Falls, NY (US);

Stanley Everett Schuster, Granite Springs, NY (US);

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
G11C / ;
U.S. Cl.
CPC ...
365149 ; 365154 ; 257301 ; 257903 ;
Abstract

An optimized trench capacitor structure which is useful as a decoupling capacitor or a storage capacitor can be manufactured without added process complexity. As an on-chip decoupling trench capacitor structure, the structure reduces the series resistance to outer and inner plates and results in an acceptable RC delay, while maintaining a high capacitance per unit area. As a storage capacitor with a buried shield, the trench capacitor structure exhibits high immunity to alpha particle and cosmic radiation induced failures. The trench capacitor structure which includes a buried n-well in a silicon substrate. A trench is formed in the substrate and extends through the buried n-well. A dielectric film is formed on an inner surface of the trench, and an inner plate formed as a polysilicon fill within the trench is connected to a surface n+ film formed during definition of peripheral source/drain contacts of the integrated circuit. An outer plate of the capacitor in the form of an out diffusion from the trench provides a low resistance electrical contact with the substrate. A number of these capacitors can be combined in a very efficient X-Y array of decoupling capacitors.


Find Patent Forward Citations

Loading…