The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 01, 1998
Filed:
Jun. 28, 1995
Arnd Hermann Kilian, Summit, NJ (US);
Hyung Jong Lee, Westfield, NJ (US);
John Burnette MacChesney, Lebanon, NJ (US);
Lucent Technologies Inc., Murray Hill, NJ (US);
Abstract
A novel planar waveguide structure has been constructed by sintering substantially pure SiO.sub.2 layers in a He.sub.2 /BCl.sub.3 atmosphere. This results in the generation of a liquid phase of substantially lower viscosity than that of the deposited silica by itself. Since viscous sintering is enhanced by the presence of this liquid, consolidation occurs at lower temperature, e.g. 1000.degree.-1100.degree. C., than those used in the prior art, e.g. 1350.degree.-1500.degree. C. Much of the B.sub.2 O.sub.3 remains unreacted with the silica particles it helps to sinter, acting like a flux to bring about consolidation. This remaining B.sub.2 O.sub.3 is removed at the conclusion of the consolidation procedure by steam treatment at temperatures of 900.degree.-1100.degree. C. Some boron is incorporated into the silica layer, changing its CTE without substantially increasing its index. Thus, this method improves both structure and processing of planar waveguides by reducing the processing temperature and producing a glass which does not bow the substrate and essentially eliminates birefringence resulting in polarization dependent losses. This greatly benefits sophisticated circuits such as those intended for wavelength diversion multiplexing and allows narrow and precisely positional pass bands.