The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 25, 1998
Filed:
Jun. 28, 1996
Michael Bakhmutsky, Spring Valley, NY (US);
Viktor L Gornstein, New York, NY (US);
Philips Electronics North America Corporation, New York, NY (US);
Abstract
A one-hot overflow matrix which includes a first one-hot input comprised of a plurality n of parallel bits arranged in sequence from a zero bit position to an (n-1) bit position, a second one-hot input comprised of a plurality n of parallel bits arranged in sequence from a zero bit position to an (n-1) bit position, a plurality n of output gates (e.g., tri-state buffers) each having a first input, a second input, and an output, a data output line commonly coupled to the output of each of the output gates, a plurality n/2 of NOR gates each having one or more data inputs, and a data output, and a plurality (n/2-1) of OR gates each having one or more data inputs, and a data output. The data input(s) of each respective ith one of the NOR gates are respectively coupled to the zero bit position through ((n-1)-i) bit position bit(s) of the second one-hot input. The first input of each respective ith one of the output gates is coupled to the data output of a corresponding ith one of the NOR gates, and the second input of each respective ith one of the output gates is coupled to a corresponding ith bit position bit of the first one-hot input. The data input(s) of each respective jth one of the OR gates are respectively coupled to the (n-j) bit position through (n-1) bit position bits of the second one-hot input, where i=n/2 through (n-1), and j=(n/2-1) through 1.