The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 11, 1998
Filed:
Apr. 15, 1996
Milton E Fuller, Reno, NV (US);
David W Deamer, Santa Cruz, CA (US);
Mark N Iverson, Reno, NV (US);
Ajit J Koshy, deceased, late of Reno, NV (US);
Solid State Farms, Inc., Reno, NV (US);
Abstract
Concentration of a target chemical in the presence of other substances in a specimen is determined by subjecting the specimen to radio frequency electromagnetic components, sequentially or otherwise, ranging to about 5 GHz. The reflected and/or transmitted signal real and imaginary components at the specimen are spectrally examined as a function of frequency to identify the presence and/or concentration of the chemical of interest. Such examination includes analysis of the effective complex impedance presented by the specimen, and/or effective phase shift between the transmitted and reflected signal at the specimen. The effects upon glucose concentration measurements of varying electrolytes, primarily NaCl, can be nulled-out by examining impedance magnitude at a cross-over frequency, for example about 2.5 GHz. NaCl concentration exhibits a very linear relationship with phase shift change at frequencies in the 2 GHz-3 GHz range. In a specimen that is blood, such phase shift measurements provide data proportional to NaCl concentration. Impedance magnitude measurements using 1 MHz to 400 MHz frequencies provides a measure of combined concentration of glucose and NaCl. The phase shift data may then be used to substrate out the NaCl concentration from the combined concentration, to yield a good measure of glucose concentration. Such tests may be conducted in-vitro or in-vivo and lend themselves to blood level glucose analyses by diabetics.