The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 21, 1998
Filed:
Dec. 12, 1995
Dario Cabib, Timrat, IL;
Robert A Buckwald, Ramat Yishai, IL;
Zvi Malik, Kfar Haroe, IL;
Yuval Garini, Mizpe Koianit, IL;
Nir Katzir, Givat Elah, IL;
Dirk G Soeknsen, Carlsbad, CA (US);
Applied Spectral Imaging Ltd., Migdal Haemek, IL;
Abstract
According to the present invention there are provided spectral imaging methods for biological research, medical diagnostics and therapy comprising the steps of (a) preparing a sample to be spectrally imaged; (b) viewing the sample through an optical device, the optical device being optically connected to an imaging spectrometer, the optical device and the imaging spectrometer obtaining a spectrum of each pixel of the sample by: (i) collecting incident light simultaneously from all pixels of the sample using collimating optics; (ii) passing the incident collimated light through an interferometer system having a number of elements, to form an exiting light beam; (iii) passing the exiting light beam through a focusing optical system which focuses the exiting light beam on a detector having a two-dimensional array of detector elements, so that at each instant each of the detector elements is the image of one pixel of the sample, so that the real image of the sample is stationary on the plane of the detector array, and so that each of the detector elements produces a signal which is a particular linear combination of light intensity emitted by the pixel at different wavelengths, wherein the linear combination is a function of the instantaneous optical path difference; (iv) rotating one or more of the elements of the interferometer system, so that the optical path difference between the two coherent beams generated by the interferometer system is scanned simultaneously for all the pixels of the sample; and (v) recording signals of each of the detector elements as function of time using a recording device to form a first spectral cube of data; and (c) interpreting the first spectral cube of data using a mathematical algorithm.