The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 30, 1998

Filed:

Feb. 15, 1996
Applicant:
Inventors:

Douglas A Collins, Pasadena, CA (US);

Thomas C McGill, Pasadena, CA (US);

George O Papa, Pasadena, CA (US);

Assignee:
Attorney:
Primary Examiner:
Int. Cl.
CPC ...
C30B / ;
U.S. Cl.
CPC ...
117 85 ; 117 86 ; 117108 ; 117202 ;
Abstract

Methods and apparatus are provided for monitoring deposition and pre-deposition characteristics such as the growth rates, oxide desorption, surface reconstruction, anion surface exchange reaction and smoothness of the surface of rotating substrates in near real-time during molecular beam epitaxy by processing the data in the time domain and for controlling a deposition apparatus in near real-time. An apparatus for extracting the characteristics and controlling the deposition apparatus in near real-time includes the following: (a) the deposition apparatus having a rotating substrate, (b) an energy pattern generator for subjecting the substrate to a beam of energy and for producing energy patterns, (c) an imaging unit for obtaining video images of the energy patterns, video images each having pixels, (d) a data processing unit for monitoring a selected set of the pixels on each of the video images, generating time-domain data for each video image and generating deposition parameters in near real-time, and (e) a deposition control unit for controlling the deposition apparatus in response to receiving the deposition parameters in near real-time. The method of extracting the characteristics and controlling the deposition apparatus in near real-time includes the following steps: obtaining video images of energy patterns coming from the substrate, monitoring a selected set of the pixels on each video image to generate time-domain data, filtering the time-domain data in near real-time, and controlling the deposition apparatus in near real-time.


Find Patent Forward Citations

Loading…