The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 23, 1998
Filed:
Sep. 10, 1996
Francisco Jose Barreras, Sr, Miami, FL (US);
Plexus, Inc., Miami, FL (US);
Abstract
The implantable device includes a power supply including a high value, small sized capacitor having at least a capacitive rating of 0.1 farads which is completely contained within the implantable device. This high value, small size capacitor or series of capacitors enables the implantable device to deliver, on a controlled and continual basis, electric energy over at least an eight hour period. Further, the capacitive power source is replenished via an external, RF coupled device on a daily or other long term periodic basis. During the replenishing cycle, the energy contained in the battery of the external transmitter is transferred to the internal capacitive power source in the implantable device. The method includes providing, on an exclusive basis, power to an implantable device via a high value capacitive source during at least an eight hour cycle of substantially continual delivery of electric energy. The method includes incorporating and containing a capacitive device in the implantable device wherein the capacitive device has a capacitive rating of at least 0.1 farads. The capacitive device captures and stores a pre-determined amount of coulombs of electrical energy. This electrical energy is utilized to power the implantable device during at least an eight hour cycle during substantial continual delivery of electrical energy. The replenishment unit can be programmed to interrogate the implanted device and reprogram the implanted device upon detection of a lower power status signal. Also, automatic as well as manually commanded replenishment routines are established between the replenishment unit and the implanted device. Data transmission, error detection routines are established for the programming of the implanted device.