The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 16, 1998
Filed:
Apr. 19, 1996
Guillaume Morel, La Varenne St Hilaire, FR;
Steven Dubowsky, Wellesley, MA (US);
Massachusetts Institute of Technology, Cambridge, MA (US);
Abstract
An elegant, cost-effective apparatus and method is disclosed for compensating the effect of joint friction in manipuulators. The invention uses a six axis wrench sensor (also called a force/torque sensor) mounted between the manipulator and a reference body upon which it is supported. From the base wrench measurements, for rotary joints, the joint torques are estimated. The estimation apparatus uses Newton-Euler relations of successive link bodies. The estimated torque is fed back through a torque controller, that virtually eliminates friction and gravity effects. A position control loop encloses the torque controller and provides it with desired torques computed from measured position errors. For linear joints, appropriate forces are estimated. Coupled to link position sensors and the wrench sensor, is a gravity compensator, which generates a dynamic wrench signal that corresponds to the gravity compensated dynamic component of the base wrench signal, based on the position signals and the base wrench signal. Coupled to the gravity compensator and the position sensors is a joint analyzer, which generates a signal that corresponds to the gravity compensated torque that is actually applied to the link at the rotary joint, based on the dynamic wrench signal and the position signals. Both torques at rotary joints and forces at linear joints are estimated by the apparatus. Multiple and single joint manipulators can be evaluated. The achieved precision is substantially greater than for conventional methods and approaches the resolution of the Puma's encoders.