The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 16, 1998

Filed:

Oct. 07, 1996
Applicant:
Inventors:

Yeong-Lin Lai, Taipei Hsien, TW;

Hung-Ping D Yang, Hsinchu Hsien, TW;

Chun-Yen Chang, Hsinchu, TW;

Edward Y Chang, Hsinchu, TW;

Kazumitsu Nakamura, Hsinchu, TW;

Rico Chang, Taoyuan Hsien, TW;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
4374 / ; 4374 / ; 437229 ; 437912 ; 437944 ;
Abstract

A method for fabricating submicron T-shaped gates for the field-effect transistors disclosed, which can be accomplished by using a tri-layer positive photoresist with a single electron beam exposure and a single development step. Therefore, the cost can be reduced and the yield can be raised for fabricating high speed field-effect transistors. The method comprises the steps of: (i) sequentially spinning coating a first photoresist layer, a second photoresist layer and a third photoresist layer on the top of epitaxial layers, wherein the second photoresist layer is thicker than the third photoresist layer, and the third photoresist layer is not thicker than the first photoresist layer, the viscosity of the second photoresist layer is larger than that of the first and third photoresist layers, and the electron beam sensitivity of the second photoresist layer is larger than that of the first and the third photoresist layers; (ii) exposing all the gate stripe region of the photoresist layers by a single electron beam exposure; (iii) using a developer to develop all the exposed positions of the three photoresist layers by a single development step, so that a T-shaped opening is formed; (iv) etching and removing a contact layer of the epitaxial layers under the T-shaped opening; (v) evaporating gate metal layers to cover the third photoresist layer and to fill the T-shaped opening; (vi) removing the photoresist layers to lift off the evaporated metal layers so that the submicron T-shaped gate is obtained.


Find Patent Forward Citations

Loading…