The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 12, 1998
Filed:
Sep. 30, 1995
Anastasios P Goutzoulis, Pittsburgh, PA (US);
John M Zomp, North Huntingdon, PA (US);
Northrop Grumman Corporation, Los Angeles, CA (US);
Abstract
A signal manifold having a source signal converter coupled to an RF source for converting a source electronic signal from the RF source into an optical signal. The manifold has an optical coupler, having multiple optical fibers, coupled to the first signal converter; and a sink signal converter coupled to the optical coupler. The sink signal converter converts the optical signal from the coupler into a sink electronic signal and conveys that electronic signal to an RF sink. The manifold can be a transmit manifold, or a receive manifold. In addition, a transmit manifold and a receive manifold can be combined to provide a bi-directional signal manifold. The invention herein also provides low-loss asymmetric fiber-optic combiner which includes multiple optical fibers, each fiber having cladding removed from the respective fiber end, exposing the fiber core. The cores are joined together in a predefined configuration and each are optically coupled to a plenum optical fiber. A method for fabricating the low-loss asymmetric fiber-optic combiner also is provided and includes the steps of etching a portion of multiple optical fibers, and removing the cladding from the optical core, producing multiple exposed optical core segments. An optical core bundle with a bundle end is formed by collaterally joining each of the multiple exposed optical core segments with the others. A planar bundle end is formed from the optical core bundle end by polishing, and rendering coplanar, the bundle end. The bundle end is coupled to a plenum optical fiber.