The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 21, 1998
Filed:
Apr. 26, 1996
Haiying Liu, Euclid, OH (US);
Gordon D DeMeester, Wickliffe, OH (US);
James M McNally, Chagrin Falls, OH (US);
Picker International, Inc., Highland Heights, OH (US);
Abstract
A sequence control (40) causes a transmitter (24) and gradient amplifiers (20) to transmit radio frequency excitation and other pulses to induce magnetic resonance in selected dipoles and cause the magnetic resonance to be focused into a series of echoes in each of a plurality of data collection intervals following each excitation. A receiver (38) converts each echo into a data line. Calibration data lines having a close to zero phase-encoding are collected during each of the data collection intervals. The calibration data lines in each data collection interval are zero-filled (86) to generate a complete data set and Fourier transformed (88) into a series of low resolution complex images (90.sub.1, 90.sub.2, . . . 90.sub.n), each corresponding to one of the data collection intervals. The low resolution images are normalized (92) and their complex conjugates taken (94). Imaging data lines are sorted by a data collection interval and zero-filled (104) to create full data sets. The full data set corresponding to each data sampling interval is Fourier transformed into partial image representations (106.sub.1, 106.sub.2, 106.sub.n). Each partial image is multiplied (108) by a complex conjugate of the normalized phase correction map (96) to create corrected partial images which are summed (112) to generate a composite image (114). The composite images are density corrected (120).