The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 24, 1998
Filed:
Jun. 28, 1996
Takao Minami, Tokyo, JP;
Ando Electric Co., Ltd., Tokyo, JP;
Abstract
In an optical fiber testing method, light are supplied to a measuring optical fiber so that return light, consisting of back-scattering light and Fresnel-reflection light, is outputted from the measuring optical fiber. A waveform representing the return light is used to perform testing of the measuring optical fiber. Herein, a detection range of the waveform used for detection of connections is defined and is partitioned into a plurality of regions in connection with Fresnel-reflection space. Then, at least a noise index and a constant are calculated for each region; and HOUGH conversion is performed on each region of the waveform. In addition, a center-value filtering process is performed, using the constant, with respect to each region of the waveform to create a filtered waveform. Further, a mean difference process is performed on the filtered waveform to create a mean difference waveform. A location of a temporary connection is set at a specific location of the mean difference waveform whose level exceeds a predetermined range. Approximate lines are calculated with respect to a left-side section and a right-side section of the temporary connection on the mean difference waveform. A connection loss is calculated for the temporary connection based on the approximate lines. Then, a decision is made, based on the connection loss, as to whether or not the temporary connection indicates a real connection. Thus, it is possible to automatically detect locations of connections and connection loss with high precision.