The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 17, 1998

Filed:

Jan. 11, 1996
Applicant:
Inventor:

Terence G Ryan, Palm Coast, FL (US);

Assignee:

Medtronic, Inc., Minneapolis, MN (US);

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
A61B / ;
U.S. Cl.
CPC ...
1286531 ; 128899 ;
Abstract

A system for precisely locating the distal end of a catheter or an electrical stimulation and/or sensing lead, particularly a pacing lead or a defibrillation lead, within a patient's body. In a first embodiment employing a passive LC resonant circuit having a resonant oscillating frequency incorporated into a catheter or lead distal tip which may be located by means for and the steps of generating a field outside the patient's body at the resonant oscillating frequency encompassing the patient's body and the implanted catheter for a predetermined time to cause the resonant circuit to store energy and oscillate, terminating the generated field, whereby the resonant circuit continues to oscillate as the stored energy is dissipated and creates a re-radiated magnetic field, detecting the re-radiated magnetic field, and determining the location of the catheter distal tip as a function of the detected re-radiated magnetic field. In a further embodiment involving an active LC resonant circuit in a lead coupled to an implanted pulse generator having a source of electrical energy, the active resonant circuit may be selectively energized to oscillate at a resonant frequency and radiate a magnetic field in response to an energizing signal applied through the electrical conductor. The location of the catheter distal tip is identified as a function of the radiated magnetic field as detected and measured outside the patient's body.

Published as:

Find Patent Forward Citations

Loading…