The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 03, 1998
Filed:
May. 24, 1995
Erhard Rasch, Ottobrunn, DE;
Eugen Statnic, Munich, DE;
Abstract
To substantially reduce harmonic distortion and improve the power factor of n operating circuit for a fluorescent lamp, a smoothing circuit (G) is interposed between the outputs from a power rectifier (GL) and an inverter (WR) supplying the fluorescent lamp (L) with high-frequency energy. The smoothing circuit includes a two electrolytic capacitor (C1, C2)--three diode (D1, D2, D3) network, which is so connected, and the diodes so polarized that, during charging of the capacitors, a series circuit is established with one (D2) of the three diodes in series with the two capacitors. For discharge of the capacitors to supply the inverter when the rectified voltage is lower than the capacitor voltage, the two capacitors (C1, C2), through the other two diodes (D1, D3), are connected in parallel to supply the inverter. To substantially reduce harmonic distortion to less than about 30% and improve the power factor of the circuit to above 0.95, a parallel resistor-capacitor (RC) circuit is connected between two junctions (V1, V2) serially with the series connected diode (D2). The resistor (R1), in combination with the capacitors, reduces, and time-delays, inrush current upon charging of the capacitors (C1, C2). The capacitor (C3) connected in parallel to the resistor (R1) permits backflow of high-frequency current from the inverter to the electrolytic capacitors (C1, C2), thus preventing transfer back to the network supply.