The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 14, 1997
Filed:
Nov. 07, 1995
Hamamatsu Photonics K.K., Hamamatsu, JP;
Abstract
Measuring scattering and absorption properties of a scattering medium according to the following: (a) causing pulsed measuring light having a predetermined wavelength to enter the scattering medium; (b) performing time-resolved measurement of the measuring light having diffusively propagated in the scattering medium at light detection positions corresponding to a plurality of combinations, each comprising a light incidence position on the scattering medium in the first step and a light detection position on the scattering medium where the measuring light entered the scattering medium in the first step and a light detection position on the scattering medium where the measuring light is detected, having different incidence-detection distances between the light incidence position and the light detection position; (c) calculating a plurality of mean optical pathlengths of the measuring light corresponding to the plurality of incidence-detection distances, based on results of the time-resolved measurement measured in the second step; and (d) calculating a scattering coefficient and an absorption coefficient in the scattering medium, based on a plurality of simultaneous relations consisting of calculation values of the plurality of mean optical pathlengths corresponding to the incidence-detection distances, calculated in the third step, and a theoretical equation of the mean optical pathlengths derived in correspondence to light diffusion properties comprising a scattering property and an absorption property in diffusive propagation paths in the scattering medium.