The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 23, 1997
Filed:
Apr. 28, 1995
Mutsuhiro Mori, Hitachi, JP;
Tomoyuki Tanaka, Hitachi, JP;
Yasumichi Yasuda, Hitachi, JP;
Yasunori Nakano, Hitachi, JP;
Hitachi, Ltd., Tokyo, JP;
Abstract
The present invention is directed to a semiconductor device which can achieve high current density and which has a high reliability. In the insulated gate semiconductor device according to the present invention, a plurality of insulating gates are provided, with each two adjacent insulating gates being spaced from each other, the insulating gates being provided on a second semiconductor region of a first conductivity type. A first semiconductor region, of the same or different conductivity type from that of the second semiconductor region, extends from a surface of the second semiconductor region opposed to the surface thereof having the insulating gates thereon. A plurality of third semiconductor regions are provided in the second semiconductor region, between the insulating gates and aligned therewith, and two fourth semiconductor regions are provided extending into each of the third semiconductor regions, aligned with the sides of adjacent insulating gates. Electrodes are respectively provided in contact with the first semiconductor region and in contact with the third and fourth semiconductor regions, the electrode in contact with the third and fourth semiconductor regions contacting such regions in the space between adjacent insulating gates. By utilizing such aligned third and fourth semiconductor regions, an insulated gate semiconductor device which operates at high current densities can be fabricated at high accuracy, and such device will be less influenced by parasitic bipolar transistor effects.