The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 19, 1997
Filed:
Jan. 11, 1996
Hao Ying, League City, TX (US);
Craig J Hartley, Houston, TX (US);
Board of Regents, The University of Texas System, Austin, TX (US);
Abstract
A method and apparatus for noninvasive and real-time monitoring and feedback control of the extent and geometry of tissue damage induced by various thermal modalities (laser, electromagnetic wave, ultrasound and thermistor) in different thermal therapies (hyperthermia, thermal coagulation and ablation) is provided. Unlike the existing ultrasound configurations, which use non-Doppler ultrasound techniques, the single-beam configuration in this invention employs a multiple-range-gate pulsed Doppler technique. The configuration may be operated in A-mode, M-mode, or multi-dimensional image mode to monitor tissue thermal response in the tissue being treated at multiple tissue depths along the sound beam. By measuring changes in phase (i.e., motion) and amplitude (i.e., echogenicity) of the echoes returned from the tissue under treatment, the Doppler system can determine temporal and spatial profiles of tissue temperature and the extent and geometry of tissue thermal damage. The system can also differentiate tissue responses corresponding to coagulation of tissue (in hyperthermia or coagulation treatment) versus ablation of tissue. Further, the Doppler detection provides feedback signals using fuzzy logic technology to automatically and in real-time regulate thermal output of various thermal modalities so that optimal thermal treatment can be obtained. The control of thermal output is achieved by adjusting treatment parameters such as pulse rate, exposure time and output power in the case of lasers. The Doppler detection results can also be shown on a suitable display device to allow manual feedback control of a thermal modality by a human operator.