The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 05, 1997
Filed:
Sep. 21, 1994
Fumiyoshi Kirino, Tokyo, JP;
Harukazu Miyamoto, Kodaira, JP;
Shigenori Okamine, Kodaira, JP;
Noriyuki Ogihara, Ibaraki-ken, JP;
Masahiko Takahashi, Hachioji, JP;
Norio Ohta, Iruma, JP;
Toshio Niihara, Sayama, JP;
Hitachi, Ltd., Tokyo, JP;
Hitachi Maxell, Ltd., Osaka, JP;
Abstract
In a magneto-optical disk for recording, reproduction or erasing with a laser beam, which comprises a film of four-layer structure consisting of a first dielectric layer, a magneto-optical recording layer, a second dielectric layer and a metallic layer, laid on a disk substrate provided with guide tracks, temperature distribution of the magneto-optical recording layer is controlled by controlling the thermal diffusivity of the metallic layer, and recording/reproduction/erasing repetition characteristics are improved thereby. In the disk of the present structure, the temperature is elevated in a broader area from the center of laser beam, and thus a thoroughly broad erasing domain width taking a track offset into account can be obtained and no recording domains remain after the erasing. The reproduced signal output is increased by 4 dB, as compared with that obtained by a disk of three-layer structure without any metallic layer, because the beam utilization efficiency is increased owing to both Kerr effect and Faraday effect. When the disk of the present structure is subjected to field modulation recording, tails of arrow-feather-shaped recording domains peculiar to the field modulation recording can be shortened and interbit interferences can be overcome, resulting in an increase in C/N (S/N) ratio and the high density recording can be made.