The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 08, 1997
Filed:
Mar. 18, 1996
Paul Shieh, Fremont, CA (US);
Biomedix, Inc., Fremont, CA (US);
Abstract
A redox electrode for the rapid detection of glucose in aqueous media and a method for its use are provided. The redox electrode comprises an electrically conductive member such as copper, and a redox membrane in direct contact with said electrically conductive member. The redox membrane comprises a polymer matrix such as PVC containing a plasticizer, and a complex of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene with the complex having a burgundy-red coloration and characterized by a broad absorption from about 340 nm to about 550 nm and weaker absorption between about 650 nm to about 800 nm having about six small peaks with an absorption maximum at about 750 nm. Glucose is rapidly assayed by bringing the redox electrode and a reference electrode into simultaneous contact with an aqueous medium containing KCl, phosphate buffer, glucose oxidase, peroxidase, and 3,3',5,5'-tetramethylbenzidine dihydrochloride. The potential of the redox membrane is then monitored until it is stable. A sample containing glucose is added to the aqueous medium, and the change of potential of the redox electrode, which is related to glucose concentration, is then observed. In a variant of this method, the redox electrode is treated with ascorbic acid before a glucose oxidation to magnify the potential difference generated, and after oxidation to rapidly collapse the potential and prepare the electrode for another analysis.