The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 17, 1997
Filed:
Jun. 29, 1995
Gerald George Pechanek, Endwell, NY (US);
Stamatis Vassiliadis, Vestal, NY (US);
Jose Guadalupe Delgado-Frias, Endwell, NY (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
A parallel computer architecture supporting neural networks utilizing a novel method of separating a triangular array containing N processing elements on each edge into multiple smaller triangular arrays, each of dimension X and each representing a common building block processor group chip that can be interconnected for various size parallel processing implementations. The group chips are interconnected by a unique switching tree mechanism that maintains the complete connectivity capability and functionality possessed by the original triangular array of dimension N. For a given size K and X, K divisible by X, a triangular array containing K processor elements located on each edge of an equilateral triangular array is partitioned into K/X triangular arrays of dimension X and K(K-X)/2X.sup.2 square processor arrays of dimension X. An algorithm partitions a square array into two triangular arrays, each of dimension X. Assuming K=N and the chosen technology supports the placement of a triangular processor group chip of dimension X on a single chip, the final scalable parallel computing structure for N root tree processors utilizes N.sup.2 /X.sup.2 triangular processor group chips. The partitioning methodology creates a scalable organization of processor elements. An interconnection mechanism preserves the functionality of the original triangular array of dimension N in the implemented structure constructed of multiple triangular arrays of dimension X.