The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 03, 1997
Filed:
Sep. 21, 1995
Richard E Stelter, Livermore, CA (US);
PERMAG Corporation, Fremont, CA (US);
Abstract
A dipole permanent magnet structure having a rectangular gap about a longitudinal axis, in which tapered pole pieces form opposing sides of the rectangular gap to permit establishing a magnetic field in the gap. Permanent magnets having a rectangular shape are coupled to the rear, or base, of each pole piece, and have a magnetic field oriented in the same direction as the pole pieces, perpendicular to longitudinal axis, thereby establishing a magnetic field between the pole pieces. Additional permanent magnets, including a pair of blocking magnets, are coupled to the aforementioned permanent magnets to form a magnetic circuit. The orientation of the magnetic field of each permanent magnet is generally aligned in the direction of the lines of flux in the magnetic circuit to maximize the flux density within the air gap created by formation of the permanent magnets. Moreover, the pair of blocking magnets each form an opposing side of the rectangular gap adjacent to the pole pieces to prevent fringing. The structure is thus capable of generating a magnetic field having a flux density greater than the residual flux density of the magnet material. Indeed, the gap flux density is limited only by the saturation flux density of the pole pieces. Thus, the permanent magnets can be made of magnet material having high coercivity and high saturation magnetization level. An embodiment of the magnet structure is capable of generating a magnetic field in the air gap having a flux density of 2.2 Tesla (22,000 Gauss).