The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 22, 1997
Filed:
Apr. 08, 1996
Barry E Shepley, Novi, MI (US);
Christopher K Palazzolo, Ann Arbor, MI (US);
Robert E DeJack, Whitmore Lake, MI (US);
John E Chancey, Grosse Pointe Farms, MI (US);
Deborah R Pank, Ypsilanti, MI (US);
Ford Motor Company, Dearborn, MI (US);
Abstract
A method of preparing and coating cylindrical bore surfaces of an aluminum workpiece that comprises (a) inserting and rotationally reciprocally moving a plurality of honing elements against the bore surface with a pressure of at least 30 psi to effect a pattern of spiral overlapping abrasions on said surface, each element being constituted of multifaceted, irregular-shaped, abrasive particles (i.e., diamond or SiC) having a particle size of 30-1300 micrometers. The particles, when in contact with the surface, plow micro-sized, non-smooth and irregularly spaced grooves in the aluminum workpiece resulting in spiral peaks and valleys along the direction of movement of the particles, whereupon repeated reciprocation and rotation of the elements (i.e. 50-200 sfm) thereagainst results in overlapping grooves and cross-abrading of the prior peaks and valleys accompanied by a molding and folding over of certain of the peaks and valleys to create irregular, micro-sized tears, folds, and undercuts; and (b) thermally depositing wear resistant metallic particles onto the abraded surface to form a cohesive coating, said deposited particles migrating into the non-smooth grooves and into the irregular tears, folds, and undercuts during thermal deposition to increase the mechanical bond strength of the coating to the workpiece surface.