The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Apr. 15, 1997

Filed:

Nov. 06, 1995
Applicant:
Inventors:

Haiying Liu, Euclid, OH (US);

Rao P Gullapalli, Richmond Heights, OH (US);

Mark J Loncar, Richmond Heights, OH (US);

Gordon D DeMeester, Wickliffe, OH (US);

Assignee:

Picker International, Inc., Highland Heights, OH (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01V / ;
U.S. Cl.
CPC ...
324309 ; 324307 ;
Abstract

A sequence control (40) causes a transmitter (24) and gradient amplifiers (20) to transmit appropriate radio frequency excitation and other pulses to induce magnetic resonance in selected dipoles and cause the magnetic resonance to be refocused into a series of echoes following each excitation. A receiver (38) converts each echo into a digital data line. Each data line is regridded (70) for uniformity in k-space (FIG. 4). The data lines are one-dimensionally Fourier transformed (72) in a frequency encode direction. The one-dimensionally Fourier transformed data lines are multiplied (80) with a phase correction vector. A phase correction vector determining system (82) determines a corresponding phase correction vector for each echo number or position following excitation from a series of calibration echoes. To compensate for a decrease in magnitude with echo position following excitation, the intensity of each data line is scaled (90) to a common magnitude. The intensity corrected data lines are stored in a memory (96) and one-dimensionally Fourier transformed in a phase encode direction into an image memory (100). A monitor (104) converts the image memory representation into a human-readable display.


Find Patent Forward Citations

Loading…