The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 08, 1997
Filed:
May. 26, 1995
Barin G Haskell, Tinton Falls, NJ (US);
Richard V Kollarits, Colts Neck, NJ (US);
Atul Puri, Riverdale, NY (US);
Lucent Technologies Inc., Murray Hill, NJ (US);
Abstract
Efficient digital compression of 3D/stereoscopic video is achieved by a novel technique in which various views forming 3D/stereoscopic video are coded by utilizing the redundancies among the views. Coding is performed in a manner compatible with existing equipment to allowing decoding of one layer of video for display on normal (i.e., monoscopic) displays. The motion compensated discrete cosine transform ('DCT') coding framework of existing standards such as the Motion Pictures Expert Group-Phase 2 ('MPEG-2') video standard is exploited, and when necessary extended, to result in highly efficient, yet practical, coding schemes. In constrast with known techniques of encoding the two views forming stereoscopic video which rely on the use of a disparity estimate between the two views (where one of the views is the reference, coded by itself and the other is disparity compensated predicted and coded with respect to the reference view), the present techniques invention utilize one disparity estimate and one motion compensated estimate. Two novel methods for combining these estimates for prediction are provided. The first method provides an average between the two estimates; the second method allows choice between various combinations resulting from prespecified weightings applied to the estimates. Such a technique, advantageously, represents a significant improvement over known techniques in achieving high-efficiency digital compression of 3D/Stereoscopic video, and advantageously is fully compatible with existing video compression standards. Furthermore, although digital broadcast service for 3D/stereoscopic television can be realized by the practice of the invention immediately, full compatibility with normal video displays is provided, allowing gradual introduction of high quality stereoscopic displays in future.