The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 01, 1997
Filed:
Aug. 07, 1995
R Bruce Spratt, Bountiful, UT (US);
OEC Medical Systems, Inc., Salt Lake City, UT (US);
Abstract
An automatic X-ray exposure control system and method for adjusting the X-ray dose/technique of X-ray diagnostic equipment to ensure sufficient doses/techniques for proper imaging while minimizing levels of radiation contacting the patient. The system includes traditional X-ray sources to generate a X-rays and traditional X-ray receivers for developing an image of a piece of anatomy through which the X-rays have passed. A mechanism for analyzing the intensity of the image is disposed adjacent the X-ray receiver and opposite the X-ray source. Typically, the mechanism is a CCD video camera which provides two outputs, the first output being absolute brightness as recorded by the camera. The video is analyzed by a windowing circuit or similar device to select an area of the image and restrict further processing of the image to that area. Circuits analyze the windowed area to detect the peak brightness and the average brightness within the windowed area. A microprocessor mathematically combines the readings to obtain a single value characteristic of the density of the piece of anatomy imaged by the X-ray equipment. The microprocessor then compares this value with one or more predetermined exposure control tables; determines the ideal dose/technique for imaging and adjusts the X-ray source to achieve ideal exposure. Through efficient and automatic management, the microprocessor can adjust the X-ray technique rapidly, thus reducing exposure time of X-rays. Furthermore, automatic adjustment may select predetermined techniques that minimize dose, and that are less obvious to some operators.