The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 25, 1997
Filed:
Feb. 08, 1995
Jeffrey S Paine, Blacksburg, VA (US);
Craig A Rogers, Blacksburg, VA (US);
Virginia Tech Intellectual Properties, Inc., Blacksburg, VA (US);
Abstract
A fiber reinforced polymer material has improved impact strength and resistance to delamination and perforation when fibers which exhibit martensite phase transformations are incorporated into the composite material. By embedding or 'hybridizing' a brittle composite laminate with fibers that exhibit martensite phase transformations, the composite's impact resistance can be improved beyond what is presently possible. During an impact event, high localized stresses are formed at the point of object and laminate contact. By undergoing a stress-induced martensite phase transformation, the fibers which exhibit martensite phase transformations dissipate a large amount of strain energy. The phase transformation enables the fibers to accommodate up to 8% reversible strain and up to 20% ultimate strain. The impact energy is more readily dissipated by the fibers which exhibit martensite phase transformations than by the host composite material or by other hybridizing materials. Impact strain energy dissipated by the fibers which exhibit martensite phase transformation is not available to initiate damage to the host composite material. Furthermore, the fibers which exhibit martensite phase transformations have higher stiffness and strength properties than conventional composite toughening agents such as elastomers and simple polymers.