The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 18, 1997
Filed:
Apr. 18, 1994
Sudhir R Brahmbhatt, Glencoe, MO (US);
Christopher R Young, St. Charles, MO (US);
MG Industries, Malvern, PA (US);
Abstract
One forms spherical or spheroidal glass particles by entraining a powder of glass particles in a carrier gas and injecting the entrained particles into the center of the flame of an oxygen-fuel burner. Separate conduits carry fuel, such as natural gas, and substantially pure oxygen into the burner to support combustion. The temperature in the burner flame does not exceed about 5000.degree. F. Heat from the flame causes the particles to become spheroidal, due to surface tension, but the particles do not remain in the flame long enough to melt. By adjusting a valve in the line which conveys the carrier gas and glass particles, one varies the time during which the particles reside in the flame. If the pressure becomes too high, the residence time decreases, and the particles may not become entirely spheroidal. If the pressure becomes too low, the residence time increases, and the particles may melt and/or form undesirable filaments. One can retrieve the product particles from the bottom of the burner chamber, and also by filtering the exhaust gases to recover particles entrained by the exhaust. The oxygen used to support combustion can also be used as a carrier gas. The invention also includes an apparatus for automatically regulating the flow of oxygen and fuel, so as to maintain both the desired flame temperature and the optimal ratio of oxygen to fuel.