The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 04, 1997
Filed:
Nov. 04, 1994
Raymond F Schinazi, Decatur, GA (US);
Thomas E Keane, Dunwoody, GA (US);
Dennis C Liotta, McDonough, GA (US);
Emory University, Atlanta, GA (US);
Abstract
Methods and compositions for treating urogenital tumors, and particular, cancer of the prostate, bladder, and kidney, with BCNT, are disclosed. Any boron-containing compound that is sufficiently lipophilic to pass through the appropriate urogenital membranes in a quantity high enough to achieve therapy on irradiation with low-energy neutrons can be used. Carboranyl-containing nucleosides and oligonucleotides are particularly suited for use in BNCT of urogenital tumors. Preferred compounds include 5-carboranyl-2'-deoxyuridine (CDU) and 5-o-carboranyl-1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)uracil (CFAU). Nucleosides and oligonucleotides bearing an -O-[(carboran-1-yl)alkyl]phosphate, S-[(carboran-1-yl)alkyl]phosphorothioate, or Se-[(carboran-1-yl)alkyl]phosphoroselenoate in place of the (carboran-1-yl)phosphonate moiety can be used. Oligonucleotides of specific gene sequences that include one or more 3',5'-linking-(carboran-1-yl)phosphonate moieties can also be used in antisense therapy in the selective modification of gene expression. Compounds can be used in urogenital BNCT therapy that contain boron clusters as a means to enhance lipophilicity wherein the boron is not enriched in .sup.10 B, but instead, in the .sup.11 B isotope. The therapy is accomplished by administering the boron-containing compound by any appropriate route, including by intravenous injection, oral delivery or by catheter or other direct means, in such a manner that the compound accumulates in the target tumor. After desired accumulation of the compound in the tumor, the site is irradiated with an effective amount of low energy neutrons.