The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 14, 1997
Filed:
Mar. 24, 1994
Robert M Waymouth, Palo Alto, CA (US);
Geoffrey W Coates, Palo Alto, CA (US);
Elisabeth M Hauptman, Wilmington, DE (US);
Leland Stanford, Jr. University, Stanford, CA (US);
Abstract
This invention is directed to novel catalysts the structure and activity of which can be controlled to produce a wide range of alpha olefin polymers and co-polymers, and preferably for the production of stereoblock poly alpha olefins comprising a wide range of preselected amorphous and crystalline segments for precise control of the physical properties thereof, principally elastomeric thermoplastic properties. More specifically, this invention is directed to novel catalysts and catalysts systems for producing stereoblock polypropylene comprising alternating isotactic and atactic diastereosequences, which result in a wide range of elastomeric properties. The amount and numbers of crystalline sections, the isotactic pentad content, the number and length of intermediate atactic chains and overall molecular weight are all controllable by the steric structure of the catalysts and the process conditions. The novel catalysts provided by the present invention are ligand-bearing non-rigid metallocenes the geometry of which can be controlled on a time scale that is slower than the rate of olefin insertion, but faster than the average time to construct (polymerize) a single polymer chain, in order to obtain a stereoblock structure in the produced polyolefins. The symmetry of the catalyst structure is such that upon isomerization the catalyst symmetry alternates between a chiral and an achiral geometry. This geometry alteration can be controlled by selecting ligand type and structure, and through control of polymerization conditions to precisely control the physical properties of the resulting polymers.